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Abstract:  

Pesticide leaching poses a threat to the environment and groundwater. Which is why the 

Danish Pesticide Leaching Assessment Programme (PLAP) was established in 1999. The 

data from this project contains a variety of variables for a 20-year period. These 

variables are used to try and estimate groundwater table which acts as a proxy for the 

groundwater recharge, which is a key factor in pesticide leaching. This is done using 

linear regression techniques and data such as precipitation, potential evapotranspiration, 

and soil water content. The resulting models manage to recreate a groundwater table 

with a minimum of calibration time and variables. 
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Introduction 

Objective 

The purpose of this thesis is to improve the modeling of the groundwater recharge that 

goes through the vadose zone to the saturated zone. This is done with the help of 

machine learning more specifically regression analysis. As there are no measurements 

for groundwater recharge to compare the results of these models against the 

groundwater table is used as a proxy for this measurement. Models for estimating 

groundwater recharge from groundwater table data are available see Cuthbert (2019) 

that uses the water table fluctuation for estimating the recharge. This estimation will not 

be done in this thesis. 

The data used for the modeling is from the Danish Pesticide Leaching Assessment 

Programme (PLAP). Until now the modeling for PLAP has been done using the MACRO 

model, which is a physically based one-dimensional numerical model based on Richards' 

equation and the convection-dispersion equation (Rosenbom, 2021). 

These models are more representative for larger domains. The problem with physically 

based modeling in a hydrologic context is that numerically implementing geological 

heterogeneities can be hard and they are inhibited by the understanding of the physics 

controlling the transport (Gumiere et al 2020). 

The objective would be to be able to make a better model from the available data, that 

more accurately predicts the pesticide leaching. More specifically getting a better 

determination of the recharge, a flow of volume over time, through the vadose zone, a 

zone not fully saturated by water. As recharge is hard to measure and is not available for 

the sites a proxy is needed to approximate this. The proxy used is the groundwater 

table. All the modeling done here is in one dimension. 

Linear regression is an algorithm used both within statistics and machine learning 

(Maulud, 2020). Similar use of linear regression can be seen in works such as Huang 

(2019) where linear regression as well as multi-layer perception and long short-term 

memory models are used for predicting groundwater recharge estimated using water 

table fluctuation for a region in Australia based on information from 465 boreholes for a 

timeframe of 42 years. In this thesis the data is from one site only and on a shorter 

timescale. 

Pesticides and groundwater 

Pesticides are a broad group of products that includes fungicides, herbicides, and 

insecticides. The use of pesticides is especially common in agriculture, with it being a 

main contributor of pesticide use in Denmark (Miljø- og Fødevareministeriet (2017)).  

Leaching of pesticides and their degradation products poses a risk to groundwater 

resources and surface water systems. In agricultural practice pesticides are widely used 

and agricultural land takes up close to two-thirds of the area of Denmark, while drinking 

water is almost exclusively extracted from the groundwater. This makes monitoring of 

where leaching is likely to occur very relevant. The limit value for pesticides in drinking 

water and groundwater is set at 0.1 μg/L on an EU wide level. Recharge affects the 

leaching of pesticides into the groundwater as the pesticides and their breakdown 

products will flow into the groundwater. Numerous factors affect leaching of pesticides 

including agricultural practices, climate, hydrogeology, and soil type.  
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PLAP 

In 1999 the Danish Pesticide Leaching Assessment Programme (PLAP) was established. 

The PLAP fields were established to test the impact of pesticides under field conditions 

and to not just rely on modeling and laboratory experiments, as the field conditions will 

influence the leaching. The project evaluates whether use of pesticides within the limits 

of given regulation will result in concentrations in the groundwater that exceed the 

permitted limits, as well as informing the scientific basis on which regulatory decisions 

are made. The focus is on the agricultural use of pesticides and their impact on the 

groundwater. The compounds that are to be evaluated for are selected based on 

information about sales of the compounds as well as knowledge about their mobility and 

how used it is per area combined with other factors. (Miljø- og Fødevareministeriet, 

2018) 

 

Figure 1: The locations of the six monitoring fields are marked throughout Denmark. With the soil type and the 
span of the annual net precipitation. (Modified figure from Rosenbom (2021)) 

PLAP consists of six monitoring fields as shown in figure 1. These sites have been chosen 

to represent different mean annual precipitations and soil types found throughout 

Denmark. The fields at Jyndevad and Tylstrup have sandy soils, while the fields at 

Estrup, Faardrup, Lund, and Silstrup have clayey till soils. All the fields were established 

in 1999 or 2000, except for Lund which was established in 2017. The monitoring for all 

fields is ongoing, except for the field at Tylstrup which was put on standby in 2019. The 
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fields are monitored for different pesticides and their breakdown products. In figure 1 

the yearly net precipitation is shown, which is the part of the precipitation that is not 

evaporated or transpired. Although the yearly normal precipitation is for 1931-1960, the 

tendencies are assumed to be the same although the numbers would be different 

(Miljøstyrelsen, 1992). 

The data that has been collected spans from the beginning of the project until today. 

Although the main purpose is to measure the concentrations of pesticides, other 

parameters that affect leaching are also measured such as precipitation, soil water 

content and groundwater table.  

The climate affects pesticide leaching, factors such as temperature, evaporation, and 

precipitation. As the temperature and evaporation does not differ much in Denmark, the 

sites have been chosen based exclusively on net precipitation. (Lindhardt, 2001) 

Area of interest 

In this report it was chosen to work on a sandy soil location. This choice was made as 

clayey tills are more unpredictable because fractures and biopores in the till can cause 

preferential flow that is harder to predict (Rosenbom, 2021). As Tylstrup one of the two 

sandy sites is on standby the other site which is Jyndevad was the site chosen to work 

on for this thesis. 

In figure 2 the PLAP field at Jyndevad is shown. The inner white part is where crops are 

grown on the field, while the gray outer part is a buffer zone where grass is grown. The 

crops that are on the field are rotated for each year. All information regarding planting 

and sowing as well as the development of the plants as well as pesticide use, and 

irrigation are also documented in Rosenbom (2021) as well as earlier reports. The inner 

white field is 2.4 ha and measures 135 m x 180 m. The width of the buffer zone is 3 m 

in the east, 14 m in the south, 16 m in the west and 24 m in the north. The field is flat 

and is bordered on the eastern side by a windbreak. Monitoring for the field started in 

September 1999 and the sediment type is coarse sand.  

As can be seen in figure 2 the measurement stations are placed in and close to the 

buffer zone. The general direction of the groundwater flow is in a western direction. Each 

year a new crop is planted, the crops most often planted on the Jyndevad field from 

1999-2020 are spring barley, potatoes and winter wheat, and peas in that order. 
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Figure 2: Outline of the Jyndevad field with the inner white part being the test field and the outer gray area 
being the buffer zone. The arrow denotes the flow of the groundwater and the different measurement stations 
are shown with colored markers with the name next to it. (Modified figure from Rosenbom (2021)) 
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Theory and methods 

Trend analysis 

A first step was to investigate whether there was a trend in the time series data that is 

present for the field. The first step in this process is to plot the time series data in a 

graph and visually inspect it.  

A trend analysis is done on the time series data, for this analysis a Mann-Kendall test is 

used. The Mann-Kendall test evaluates if there is a monotonic trend, which is a 

consistent upward or downward trend, for the data. The test is nonparametric, which 

means a normal distribution of the data is not assumed. The null hypothesis for the 

Mann-Kendall test is that there is no monotonic trend for the time series, while the 

alternate hypothesis is that there is a monotonic trend. 

In equation 1 𝑓(𝑡) is the monotonic trend as a function of time, while 𝑄 is a Sen's slope 

estimate for the slope of the trend and 𝐵 is the estimate of the intercept. As we assume 

the trend is linear, we can use nonparametric Sen's method to estimate the slope and 

the intercept.  

(YYY 𝑓(𝑡)  =  𝑄𝑡 +  𝐵 (1) 

Q is calculated using the values from the time series and the time as seen in equation 2. 

 YYY) 𝑄𝑖 =
𝑥𝑗 − 𝑥𝑘

𝑗 − 𝑘
 (2) 

Where x would represent the yearly or monthly values from the time series where j is 

more recent than k. 

The Mann-Kendall test and the Sen's method of slope estimation is done using the Excel 

template from the Finnish Meteorological Institute. The data input into the model are 

time series data. Both annual and monthly values can be used in the template to 

evaluate if there are trends (Salmi, 2002). 

To do the trend analysis, the S statistic is calculated. The S statistic indicates which way 

the trend goes. It is calculated by comparing earlier observations against later 

observations and categorizing them as either 1, 0, or -1 according to whether the 

difference between the observations is positive, equal, or negative. These values are 

then summed to get the value, which indicates if there is a trend.  

The S statistic along with the variance of the statistic is then used for calculating the test 

statistic Z. The Z statistic is used to evaluate if there is a significant upward or downward 

trend, with a positive value of Z indicating a rising trend and vice versa. The equation is 

seen in equation 3, with the concept being like the S statistic. 

(YYY 𝑍 =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟(𝑆)
   if 𝑆 > 0

       0            if 𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
    if 𝑆 < 0

   (3) 

The Z test statistic can be used for evaluating if there is a significant trend. 

In the Excel sheet a two-tailed test is performed for four different significance levels, α. 

The significance levels are 0.1, 0.05, 0.01 and 0.001. These levels correspond to a 

percentage, for the chosen levels they go from 10% to 0.1% and this percentage 

describes the likelihood that the null hypothesis is being discarded even though it is true.  
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For a significance level of 0.001 this means that there is a probability of 0.1% that the 

null hypothesis is rejected even though it is true.  

Another way of understanding the significance levels are the corresponding confidence 

levels, which can be calculated by subtracting α from one. Using the above-mentioned 

significance levels the corresponding confidence levels are 90%, 95%, 99% and 99.9%. 

For each confidence level there is a corresponding value of the Z test, for 90% the value 

is ±1.645, for 95% it is ±1.960, for 99% it is ±2.576 and for 99.9% it is ±3.291. With a 

positive indicating an upward trend and a negative indicating a downward trend. This 

means that for a Z value of 3.291 or above there is 99.9% that the alternate hypothesis 

is true and that there is an upward trend. 

Synthetic data 

Synthetic data made to evaluate if it is possible to develop models and evaluate these 

models when the data is scarce (Mirus, 2011).  

To set up a synthetic model Hydrus-1D is used. Hydrus-1D is a program that simulates 

water movement in one dimension. This is done by numerically solving Richards' 

equation seen in equation 4. 

YYY) 
𝜕𝜃

𝜕𝑡
=
𝜕

𝜕𝑥
[𝐾 (

𝜕ℎ

𝜕𝑥
+ cos𝛼)] − 𝑆 (4) 

With θ being the volumetric water content, t being the time, x being the spatial 

coordinate, K being the unsaturated hydraulic conductivity, h being the water pressure 

head, and S being the sink term (Šimůnek, 2013). 

In this case the synthetic model is used to recreate a groundwater table at the field in 

Jyndevad, with the input into the Hydrus-1D model being the precipitation and the 

potential evapotranspiration from Jyndevad. 

To build up a groundwater table in Hydrus-1D two soil layers are used in the model. The 

upper layer must have a high hydraulic conductivity, while the lower layer must have a 

low hydraulic conductivity. The hydraulic model used is the van Genuchten-Mualem 

single porosity model. The upper boundary condition used is an atmospheric boundary 

condition with surface runoff, while the lower boundary condition is free drainage water 

boundary condition, which allows the water to flow through the lower boundary. The soil 

hydraulic parameters used for the two layers are shown in table 1. These values have 

been determined through trial and error trying to recreate the observed groundwater 

table as best as possible. In table 1 θr is the residual soil water content and is unitless, θs 

is the saturated soil water content and is unitless, α and n are parameters in the soil 

water retention function and α has a unit of 1/cm while n is unitless, Ks is the saturated 

hydraulic conductivity in cm/day, and I is a tortuosity parameter in the conductivity 

function and is unitless. The values of θr and θs influence the value of the soil water 

content, as these values limit the range within the synthetic soil water content can be. 

Table 1: The settings used for the different layers in the Hydrus model. Material 1 is the top layer and material 
2 is the bottom layer. 

 

The height of the soil column is set to 3 meters, with the approximate span in the data 

being around two meters, which allows space for the 0.3 m bottom layer. Observation 

points are put at a depth of 25 cm, 60 cm, as well as at the bottom of the profile. The 

θr θs α n Ks I

Mat. 1 0.13 0.30 0.04 2.68 2925 0.50

Mat. 2 0.10 0.34 0.01 1.09 0.19 0.50
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observation point at the bottom of the profile outputs the value of the groundwater 

table, while the two other observation points are placed to detect the soil water content 

at those depths, as they are measured at these depths for the field in Jyndevad. The 

height of the soil profile is subtracted from the observations outputted from the 

observation node at the bottom of the profile to get the depth of the groundwater table. 

The Feddes water uptake model is used and the parameters that are used for the root 

water uptake parameters are the ones from the build-in database in Hydrus for potatoes. 

A constant root depth is used, and it is set at 0.6 m. The time discretization for output 

results for the soil water contents as well as the groundwater table are daily. 

Regression 

Regression analysis is a method both within the fields of statistics and machine learning. 

The type of regression model that is used in this thesis is linear regression. Linear 

regression is a method of estimating the relationship between an independent or 

explanatory variable and a dependent or response variable.  

A linear regression line in its simplest form follows the equation seen in equation 5: 

(YYY) 𝑦 = 𝑎 + 𝑏𝑥 (5) 

Where y is the dependent variable, a is a constant term, b is a coefficient and x is the 

independent variable. The inputs into would be both the dependent and the independent 

variables and the output of the model would be the constant and the coefficient.  

The type of regression done here is linear regression, two types of linear regression are 

simple and multiple linear regression. Both simple and multiple linear regression have 

one dependent value, the difference is in the independent variables of which there is 

only one for simple regression while there is more than one for the multiple regression. 

The tool used for regression analysis in this thesis is MATLAB. To solve the regressions, 

the MATLAB function fitlm, which is part of its Statistics and Machine Learning Toolbox, is 

used. This function uses QR decomposition as its main fitting algorithm (MathWorks, 

2021). 

QR decomposition can be used for estimating linear regressions using the ordinary least 

squares estimation method. The least squares regression line is the smallest distance 

between the actual and the predicted value. The ordinary least squares method is a way 

of minimizing the sum of squared residuals, to find the model that fits best (Taboga, 

2021).  

The fitlm function uses one or multiple input variables to find the best fit to the response 

variable. If five input variables were used with the response variable, the fitlm function 

would solve a multiple linear regression and the model output from the function would 

look like what is seen in equation 6: 

(YYY) 𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3+𝛽4𝑋4 + 𝛽5𝑋5 + 𝜖. (6) 

With 𝑦 being the dependent variable and 𝑋 being the independent variables, 𝛽 are 

constants to the independent variables and 𝛽0 specifically is the constant term and 𝜖 is 

an error term that is included in the equation to represent the uncertainty of the model 

and accounts for the lack of fit between the model and the dependent variable. 

An example of the MATLAB script used for an example with five variables can be seen in 

the appendix. 
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For the regression models the coefficient of determination (R2) and root mean square 

error (RMSE) are used to evaluate the results. Both statistics give information about the 

fit of the regression models. 

The coefficient of determination or R2 is given by the equation in equation 7. 

(YYY) 
𝑅2 = 1 −

𝑆𝑆𝑅

𝑆𝑆𝑇
 

(7) 

With SSR being the sum squared regression, which is the difference between the 

predicted value and the mean of the observed value, while SST is the total sum of 

squares, which is the difference between the observed value and its average value. 

For multiple regression analysis the adjusted coefficient of determination value makes 

more sense, as it incorporates that each additional independent variable adds more 

uncertainty to the model. In equation 8 the calculation of the adjusted R2 is shown. 

(YYY) 𝑅𝑎𝑑𝑗
2 = 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑝 − 1
 (8) 

With 𝑛 being the sample size and 𝑝 being the number of independent regressors. 

A higher value of R2 shows how much of a linear relationship there is between variables. 

The range is from 0 to 1, with the number corresponding to the percentage that can be 

explained in the y-variable by the x-variables.  

The equation used for calculating the root mean square error or RMSE is seen in 

equation 9. 

(YYY) 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

𝑛
 (9) 

With 𝑛 again being the sample size, 𝑦𝑖 is the observed value, and 𝑦̂𝑖 is the predicted 

value. The residuals between the observed and predicted values are squared and 

summed and the square root of this is taken. The lower limit for the RMSE is zero and 

the bigger the number the bigger the error. The RMSE gives an idea of how big the error 

of the model is compared to the data in the same unit as the unit of the value that is 

being evaluated. 
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Results 

Data 

The data that are used are from Jyndevad, the location of which can be seen in the lower 

left of fig. 1, and it consists of time series of differing lengths and measurement 

frequency. 

The longest and most complete time series data are from above the ground surface, 

these being the time series for precipitation (P), daily minimum and maximum 

temperature (T), and potential evapotranspiration (PET). These time series are present 

for each day from 03/01/1984 until 30/06/2020, except for one missing measurement of 

temperature. The number of data points in these series are 13329 data points. 

The precipitation data is uncorrected and irrigation data is registered for the field.  

For the temperature time series there were 49 cases where in the raw data for the 

maximum and the minimum temperatures had been accidentally transposed. These 

values were reversed back to their proper order.  

The potential evapotranspiration has been calculated for Jyndevad. The calculation has 

been done using the Makkink method. This method is based on temperature and 

radiation (Kraalingen, 1997). The potential evapotranspiration is the possible amount of 

evapotranspiration that can take place if enough water is present. 

From below the ground surface the length of the time series and the frequency of 

measurements varies for each of the variables. The measurements that are used from 

below the ground surface are soil water content (SWC) and groundwater table (GWT). 

The soil water content is measured at six depths for stations S1 and S2 which are seen 

in fig. 2 in the northwestern corner of the test field. These are measured with time 

domain reflectometer (TDR) probes. They are measured at depths of 25, 60, 93, 110, 

190 and 210 cm. The measurements are available from 02/09/1999 until 30/06/2020 

with holes of various lengths in the time series. The mentioned time span equals 7181 

days. 

The series with the least available data are at 25 cm depth, with 6598 measurements at 

S1 and 6552 measurements at S2 and at 210 cm depth, with 6937 measurements at S1 

and 6315 measurements at S2. The four other stations have data available for close to 

the total duration, with the range of available data for those stations being 7062 to 7171 

measurements. 

The tendencies that the soil water content for S1 and S2 are similar, while the absolute 

values differ, therefore an average is taken of the two time series. The soil water content 

is reported in % and describes how saturated the soil is with water. 

The groundwater table is measured at piezometers P8-P11 that can be seen in the 

corners of the buffer zone around the field shown in figure 2. For each of these stations 

there are filters at three depths. 

The groundwater table data from Jyndevad comes in two series. The first has a larger 

number of data points for a shorter time span and the data points are a continuous daily 

series measured using a data logger. It consists of three continuous series, the first is a 

four-year series from mid-2012 to mid-2016, while the two others are one-year series 

from mid-2017 to mid-2018 and mid-2019 to mid-2020. These series have been 
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measured at the second filter depth at station P11, which is at the south-eastern edge of 

the field seen in figure 2. 

The second series has fewer data points but has been measured over a longer time 

span, these are manually measured on a more irregular basis, with a total of 354 

measurements dates. The series runs from mid-1999 until mid-2020. There are twelve 

time series, one for each filter depth at each of the four stations, with gaps of different 

lengths in the series. As these series mostly follow the same tendency an average is 

taken of all these twelve series.  

For station P10 there were values that were positive, meaning that they would be above 

the ground surface; these were excluded from the series. 

For the manually measured values an average was taken of all the four stations and all 

the filter depths, this was done as there is a variance even within the same piezometers, 

but the overall tendency is the same and lessens the impact of outliers, making the 

series more robust. 

The manually measured groundwater table is taken as a monthly mean for these 

measurements as the sampling frequency varies quite a bit, with the shortest timespan 

between measurements being on the same day and the longest being 92 days apart. The 

average span between measurement values is 22.3 days and the median value of the 

spans is 21 days. This means that there is not a mean for each month, which can also be 

seen in figure 3 where there are missing values especially before 2006. 

 

Figure 3: The monthly sums precipitation and potential evapotranspiration as well as the averages of the 
minimum and maximum temperature, the soil water content at depths 25 and 60 cm, and the groundwater 
table for the short and long series. The plotted time span is from September 1999 to June 2020. 

The precipitation, as seen in fig. 3, varies quite a lot over the timespan with the lowest 

values being close to zero and the highest close to 300 mm per month. 

The potential evapotranspiration and temperature seen in fig. 3 are quite similar in their 

trends with both being high in the summer months and low in the winter months, as the 

potential evapotranspiration is calculated based on the temperature and the radiation, 

which also affects the temperature, this is to be expected.  

The soil water content has a period of higher soil water content in the winter month and 

lower in the summer months. The soil water content at the shallower depth has bigger 
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fluctuations, while at the lower depth it is more stable. The groundwater table follows 

the same trend as the soil water content, being closer to the surface during the winter 

months and lower during the summer months. 

    

Figure 4: The flow of water in the summertime, on the left side, and the wintertime, on the right side. 
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In figure 4 the flow of the water through the soil is shown for summertime and 

wintertime. The dates have been chosen for a period with no or little rain before a bigger 

precipitation event. This is not as easily found for the winter months especially as the 

daily measurements for the groundwater table are only present for six years. The units 

for the axis are quite different, this reflects that there is a substantial difference in the 

water table and the soil moisture between the summer months and the winter months, 

the same is the case for the potential evapotranspiration. 

The impact of the precipitation on the groundwater table is easy to see in the 

wintertime, while it is not apparent for the summertime. A reason for this is the 

difference in the depth of the groundwater table, with the difference between them being 

around 1.3 to 1.4 m. The groundwater table in the wintertime is at the same level as the 

soil water content at depth 110 cm. Also, the potential evapotranspiration is a factor of 

ten higher during the summertime.  In the summertime the effect of the precipitation is 

seen within the day on the soil moisture down to 110 cm, while this is not the case in 

the wintertime. The effect on the groundwater table is apparent for the wintertime, while 

in the summertime no effect is seen. 

Synthetic data 

As there is scarcity for both cases of the groundwater table data that has been measured 

at the Jyndevad, synthetic data was created using the precipitation and potential 

evapotranspiration from the Jyndevad site.  

With the help of the synthetic model groundwater table and soil water content at depth 

25 and 60 cm is recreated from the 2nd of September 1999 to the 30th of June 2020. All 

the data used here is synthetic data, with only the precipitation and potential 

evapotranspiration being used to create the synthetic data as well as the groundwater 

table from the Jyndevad dataset being used for comparison. 

Synthetic data for groundwater table and the soil water content at depths 25 and 60 cm 

is shown in figure 5 along with the measured values for comparison. 

For the soil water content in the figure where the saturated soil water content, which is 

30% as seen in table 1, that has been input in the Hydrus model limits how high the soil 

water content can go. The residual soil water content, the value of which is 13% and is 

seen in table 1 for the first material, gives a lower limit to the soil water content. 

The synthesized soil water content at 25 cm is much more stable than the measured 

data as seen in figure 5. The measured values are between 5% and 25% and fluctuates 

very much, the synthetic data on the other hand is quite stable around 13% to 17% with 

a few peaks which go up to 30%. The synthetic data does not reflect the tendencies of 

the measured data very well. The limitations set on the model in form of the residual and 

saturated soil water contents does not help in this matter. 

The synthetic soil water content at depth 60 cm and the measured data for the same 

depth both of which can be seen in figure 5. The measured data is more stable, with the 

highest values being around 15% and the lowest around 7%. The synthetic data is quite 

stable around 13% to 17%, but it differs by having multiple high peaks that do not 

appear in the data; these peaks hit the upper limit set by the saturated soil water 

content. 
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Figure 5: The synthetic data is shown in red, with the measured data shown in black and blue. The upper 
figure shows soil water content at a depth of 25 cm, the middle figure shows the same at depth 60 cm and the 
bottom figure shows the groundwater table. 

The synthetic groundwater table and the measured values are more similar, with the 

same trends of rising and falling values being mostly the same and the biggest 

difference being the absolute values, especially for the period 2001 to 2007 where the 

values are different. From 2015 until 2020 the synthetic groundwater table hits an upper 

limit at around 0.3 m below the surface in four events, which correlates with the highest 

peaks seen in the measured data. 

When setting up the synthetic data in Hydrus the resulting synthetic data was either 

better at modeling the groundwater table or the soil water content and not both, and as 

the groundwater table was the more important in this context the model was optimized 

for the groundwater table data. 

Models and weighting 

For the regression analysis a total of five models are used, each with a different number 

of variables. The 1-variable model is based solely on the weighted precipitation. Each 

subsequent model includes the variables from the previous models as well as a new 

variable. The 2-variable model uses the weighted potential evapotranspiration as well as 

the weighted precipitation. The 1- and 2-variable models are based on variables which 

are present for the total period between the 2nd of September 1999 to the 30th of June 

2020. 

The 3-variable model is based on the weighted variables as well as the soil water content 

at depth 25 cm, while the 4-variable model also includes the soil water content at depth 

60 cm. The 5-variable model includes the groundwater table from one year before. The 

variables used in the 3-, 4- and 5-variable models each have missing data within the 

timeframe mentioned above. This means that with an increasing number of variables the 

available data for the model decreases, with the 5-variable model having the least 

available data and the 1- and 2-variable models having the most.  

As the 1- and 2-variable models are based on variables that are present for the entirety 

of the series, it is only limited by the presence of the groundwater table data when trying 

to make a regression of the variables against that data. While the 3-, 4-, and 5-variable 
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models all have further limitations, with all needing the soil water content from 25 cm, 

the two latter models needing the same from a depth of 60 cm and the last model 

needing the groundwater table from last year. This means that the more variables the 

more missing model data points. 

For the 1- and 2-variable regressions a weighting has been done for the precipitation 

and the potential evapotranspiration. This was done as the raw values of precipitation 

and evapotranspiration do not give good regression results. 

The weighting used is a linear weighting of value based on the values of the previous 

year. The weighting puts more weight on recent values and less on the older values. An 

example for a daily weighting of precipitation is shown in equation 10. 

) 𝑤𝑃 =
𝑃𝑛 ∗ (1 −

0
364

) + 𝑃𝑛+1 ∗ (1 −
1
364

) + ⋯+ 𝑃𝑛+363 ∗ (1 −
363
364

) + 𝑃𝑛+364 ∗ (1 −
364
364

)

182.5
 

 

(10) 

With 𝑤𝑃 being the weighted precipitation, 𝑃𝑛 is the precipitation of the day that is being 

weighted and 𝑃𝑛−364 is the value of the precipitation 364 days before that. The weight of 

the first value is one and the last value is zero and the weighting falls linearly between 

those numbers. The weights add up to 182.5, which is half of a year.  

This weighting means that the effect of recent data is much greater than the data from a 

year ago, with the last value shown in equation 10 being totally discounted. A total of 

365 precipitation values will be added together in a weighted average. 

The same type of weighting is done for the monthly summed values of precipitation and 

potential evapotranspiration. This can be seen in equation 11.  

) 𝑤𝑃 =
𝑃𝑛 ∗ (1 −

0
11
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1
11
) + ⋯+ 𝑃𝑛+10 ∗ (1 −

10
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) + 𝑃𝑛+11 ∗ (1 −

11
11
)

6
 

 

(11) 

Again, the data is divided by half of a year which in this case is 6 months.  

This type of weight is used as it must be assumed that if these variables do affect the 

groundwater table that this effect is not dependent only on the variable on the day that 

it is expected to predict the value, but that there is an accumulated effect on the 

groundwater table. 

When using this type of weighting the first year of data for the variables cannot be 

weighted as there is insufficient data. But as there is data for both precipitation and 

potential evapotranspiration from before the span when we are going to model for this is 

not a concern in those cases.  

The groundwater table used as the data in the monthly calculations is an average of all 

the twelve measured time series that surround the field, while for the daily series it is for 

station P11 at the middle filter depth, as this is the only longer series. 

From now on the shorter series will be referred to as the daily series, while the longer 

series will be referred to as the monthly series. For the monthly data, a monthly average 

has been taken of the groundwater table values.  

For the variables used for the monthly regression models the monthly average is used 

for the soil water content while for the precipitation and potential evapotranspiration the 

monthly sum is used. 

The weakness of the daily data is that so little of it is present. This is where the longer 

groundwater series comes in. Although the measurement frequency is not as high it has 
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been consistently measured from the establishment of the test field and thus allows for 

comparison over a much longer time span.  

The regression constants for both the synthetic and the regular models can be found in 

the appendix in tables 27 to 30. 

Data trends 

The results of the trend analysis can be seen in table 2 to table 6. In the tables the 

columns contain the first year and the last year as well as the total number of years (n) 

tested. Then comes the Z test statistic and the significance levels going from + for a 

significance level of 0.1, to * for a level of 0.05, ** for a level of 0.01, and *** for a 

level of 0.001. If no sign is present the significance level is above 0.1. Also shown are 

the slope and constant estimates as well as the change over the years calculated using 

the slope and the number of years tested. 

Table 2 and 3 show the results for precipitation, potential evapotranspiration as well as 

the minimum and maximum temperatures. The precipitation is only significant at a level 

of 0.1 for August. As can be seen in the test Z values for the precipitation, except for 

August, these are quite far from reaching even a significance level of 0.1, with the 

closest being the yearly and for the month of March, which has a negative test value, 

which indicates a falling trend. 

Table 2: The trend analysis for the precipitation, potential evapotranspiration, and the minimum and maximum 
temperatures. This is both for the monthly and yearly data. 

 

Table 3: The trend analysis for the precipitation, potential evapotranspiration, and the minimum and maximum 
temperatures. This is both for the monthly and yearly data. 

 

P PET Tmax Tmin P PET Tmax Tmin

January 1984 2020 37 -0.27 0.31 0.46 1.01

February 1984 2020 37 0.05 1.99 1.37 1.90 * +

March 1984 2020 37 -1.27 2.73 1.86 1.88 ** + +

April 1984 2020 37 0.01 3.06 2.69 2.17 ** ** *

May 1984 2020 37 0.46 0.73 0.61 1.24

June 1984 2020 37 0.54 2.26 2.68 2.68 * ** **

July 1984 2019 36 0.53 1.77 2.00 1.23 + *

August 1984 2019 36 1.87 1.27 1.40 2.30 + *

September 1984 2019 36 0.75 2.34 2.87 3.23 * ** **

October 1984 2019 36 0.48 1.76 1.27 1.51 +

November 1984 2019 36 0.00 0.59 1.76 2.38 + *

December 1984 2019 36 0.99 2.26 2.08 2.14 * * *

Yearly 1984 2019 36 1.43 3.56 3.56 3.88 *** *** ***

Significance level
Time series First year Last Year n

Test Z

P PET Tmax Tmin P PET Tmax Tmin P PET Tmax Tmin

January -0.25 0.00 0.02 0.05 108.1 6.7 3.4 -1.0 -9.1 0.2 0.9 1.7

February 0.05 0.07 0.06 0.08 64.2 11.7 2.7 -2.2 1.8 2.7 2.4 2.9

March -0.73 0.22 0.07 0.05 72.3 27.8 6.2 -0.2 -27.1 8.1 2.5 2.0

April 0.01 0.52 0.06 0.05 44.1 51.8 11.2 2.4 0.2 19.3 2.4 1.9

May 0.22 0.15 0.02 0.03 48.0 88.2 16.2 6.6 8.3 5.4 0.7 1.0

June 0.44 0.54 0.07 0.05 80.1 86.8 17.7 9.1 16.2 20.2 2.7 2.0

July 0.39 0.38 0.07 0.02 76.5 93.6 20.5 11.6 13.9 13.5 2.5 0.9

August 1.40 0.17 0.03 0.04 76.1 81.0 20.9 11.2 50.4 6.2 1.2 1.5

September 0.65 0.33 0.07 0.06 94.1 43.4 16.1 8.6 23.5 12.0 2.5 2.1

October 0.31 0.10 0.04 0.04 106.3 23.3 12.3 5.6 11.1 3.5 1.3 1.4

November -0.01 0.01 0.04 0.07 98.4 9.3 7.1 1.2 -0.4 0.3 1.5 2.5

December 0.58 0.03 0.05 0.07 85.7 4.4 4.3 -0.2 21.0 1.2 1.8 2.4

Yearly 3.52 2.49 0.05 0.05 1008.5 529.6 11.7 4.3 126.8 89.7 1.8 1.9

Sen’s slope estimate Constant Change over time period
Time series



17 

 

For the yearly data, the change is significant for the potential evapotranspiration as well 

as the temperatures. They are all significant at a level of 0.001, which is quite strong 

evidence that an upwards trend is present for the annual data. For a number of the 

months, such as April, June, and September there is also good evidence for there being 

an upward trend. Looking at the changes over the years the annual change in 

temperature over the 36 years is close to 2 °C and close to 90 mm of more potential 

evapotranspiration per year. All the slopes for these three variables are positive and so 

are all the trends that have any form of significance. 

Table 4 shows the results for the soil water content and is based on data from 1999 to 

2020. On an annual basis no trend is seen but for the months there are two months for 

depth 25 cm where there is weak evidence for a downward trend and one month for 

depth 60 cm where there is evidence for an upward trend. The slopes are mostly 

negative at the shallower depth and mostly positive at the deeper depth. 

Table 4: The trend analysis for soil water content at depths 25 and 60 cm. With the monthly and yearly trends.  

 

In table 5 the trend analysis for the groundwater table for the monthly series is shown. 

The yearly average has evidence for an upward trend, indicating that the groundwater 

table is rising, as does January and with less significance May. The slope for the yearly 

average is 0.02 m, which means the total change for the period would be 0.3 m.  

Table 5: The trends for the monthly groundwater table, both monthly and yearly.  

 

S25 S60 S25 S60 S25 S60 S25 S60 S25 S60 S25 S60

January 2000 2020 20 21 -0.88 0.82 -0.08 0.01 20.5 11.1 -1.5 0.3

February 2000 2020 21 21 -1.24 -0.45 -0.11 -0.01 21.7 11.5 -2.3 -0.2

March 2000 2020 21 21 -1.84 0.21 + -0.15 0.00 21.9 11.0 -3.1 0.1

April 2000 2020 21 21 -1.72 0.94 + -0.10 0.03 19.5 9.3 -2.0 0.6

May 2000 2020 21 21 -0.94 -0.09 -0.13 0.00 18.3 9.3 -2.6 -0.1

June 2000 2020 21 21 -0.09 0.33 -0.02 0.01 13.9 8.8 -0.3 0.3

July 2000 2019 19 19 -0.77 0.49 -0.10 0.03 15.1 8.7 -2.0 0.6

August 2000 2019 20 20 0.55 0.94 0.07 0.04 13.1 8.7 1.3 0.7

September 1999 2019 17 20 0.62 2.17 * 0.06 0.13 14.5 6.2 1.0 2.6

October 1999 2019 17 20 -0.21 0.62 -0.02 0.03 18.2 9.9 -0.4 0.5

November 1999 2019 21 21 -0.69 -0.03 -0.03 0.00 19.7 11.2 -0.7 0.0

December 1999 2019 20 21 0.10 1.18 0.03 0.02 18.5 10.9 0.5 0.4

Yearly 2000 2019 20 20 -0.36 0.81 -0.03 0.01 17.3 10.0 -0.6 0.2

Slope Constant Change
Time series First year Last Year

n Test Z Significance

GWT First year Last Year n Test Z Signific. Slope Const. Change

January 2000 2020 20 2.43 * 0.04 -2.7 0.9

February 2000 2020 19 1.47 0.03 -2.3 0.5

March 2000 2020 21 1.48 0.02 -2.1 0.5

April 2000 2020 21 1.51 0.02 -2.2 0.4

May 2000 2020 20 1.85 + 0.02 -2.3 0.4

June 2003 2020 17 1.61 0.01 -2.5 0.3

July 1999 2020 19 0.98 0.01 -2.5 0.2

August 1999 2020 19 0.63 0.01 -2.3 0.1

September 1999 2020 19 0.42 0.00 -2.3 0.1

October 1999 2020 20 1.33 0.01 -2.4 0.3

November 1999 2020 20 1.20 0.02 -2.4 0.4

December 2000 2020 21 1.30 0.02 -2.4 0.5

Yearly 1999 2020 22 2.20 * 0.02 -2.2 0.3



18 

 

Table 6: The trends for the daily groundwater table, both monthly and yearly. 

 

In table 6 the daily groundwater table series is seen, as there is only a limited amount of 

data, as can also be seen on the number of years of data that are present. To increase 

the number of full years for the yearly trend analysis, the yearly average was taken from 

July to June, as otherwise there would only be two years of complete annual data. This is 

also the only trend analysis where the S-test was done as the series was quite short. 

Although there are six months where there are significance levels of 0.05, this is also an 

extremely short dataset where even the smallest differences are amplified. This can also 

be seen when the slopes are compared to those in table 5, which should be quite similar 

as they are measured on the same field, but the slopes are multiple times higher for a 

shorter time span. 

In figure 6 the yearly trends are plotted. The data is more spread out for the 

precipitation than for the other variables, where it is easier to see an upward trend. 

 

Figure 6: The trends for the precipitation, potential evapotranspiration as well as the minimum and maximum 
temperature plotted using the slope and the constant, shown in blue and the yearly data shown in red. 

Synthetic data trends 

The trends for the synthetic data are seen in table 7. Between September and February 

there are low significance trends for all the series except for two instances, while for the 

remaining months no significant trends can be seen. In all instances the trends are 

positive, which would indicate a rising groundwater table as well as a rising soil water 

GWT First year Last Year n Test S Signific. Slope Const. Change

January 2013 2020 6 -9 0.09 -3.8 0.5

February 2013 2020 6 -13 * 0.08 -3.5 0.5

March 2013 2020 6 -13 * 0.12 -5.0 0.7

April 2013 2020 6 -11 * 0.09 -4.3 0.6

May 2013 2020 6 -13 * 0.07 -3.8 0.4

June 2013 2020 6 -7 0.06 -3.8 0.4

July 2012 2019 6 -1 0.02 -2.6 0.1

August 2012 2019 6 3 -0.04 -0.9 -0.2

September 2012 2019 6 1 0.00 -1.8 0.0

October 2012 2019 6 -5 0.02 -2.4 0.1

November 2012 2019 6 -11 * 0.04 -2.7 0.2

December 2012 2019 6 -11 * 0.06 -3.3 0.4

Yearly 2012 2019 6 9 0.06 -3.5 0.4
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content. The peaks seen in figure 5 for both the soil water contents has an effect on the 

trends and as these peaks are in the fall and winter, these are also the months where 

the significant rises are seen, without the peaks it is likely that no significant trends 

would be seen for the soil water contents. 

Compared to the trends for the measured data in table 4 and 5 there are numerous 

differences. There are far more significant trends for the synthetic data and the trends 

are all positive, while for the measured data most of the significant trends for the soil 

water content are negative. For the groundwater table there is an overlap between the 

synthetic and the measured data in that there is a slightly significant upward trend in 

January, but for the synthetic data there is a more general trend for this upward trend in 

all the months that relate to the peaks that are seen in figure 5. This means that 

although the synthetic and measured data have similar trends, the difference in absolute 

values does affect the significance of the trends. 

Table 7: The trends for the synthetic groundwater table, as well as the synthetic soil water content at depths 
25 and 60 cm. 

  

GWT S25 S60 GWT S25 S60 GWT S25 S60 GWT S25 S60 GWT S25 S60

January 2000 2020 21 2.08 1.96 2.12 * * * 0.06 0.19 0.26 -3.0 10.9 10.6 1.36 4.07 5.51

February 2000 2020 21 1.96 1.90 1.97 * + * 0.05 0.16 0.34 -2.8 11.6 9.7 1.13 3.38 7.06

March 2000 2020 21 1.54 1.42 1.60 0.03 0.12 0.15 -2.2 12.4 13.9 0.67 2.58 3.13

April 2000 2020 21 1.30 0.57 0.88 0.03 0.02 0.07 -2.6 13.6 13.6 0.68 0.49 1.45

May 2000 2020 21 0.88 0.21 0.75 0.02 0.01 0.03 -2.5 13.6 13.5 0.34 0.14 0.61

June 2000 2020 21 0.94 0.57 1.36 0.02 0.01 0.02 -2.8 13.6 13.6 0.35 0.14 0.45

July 1999 2019 21 0.03 -0.63 -0.69 0.00 -0.01 -0.01 -2.5 13.9 14.5 0.07 -0.14 -0.29

August 1999 2019 21 0.45 1.24 1.60 0.00 0.02 0.02 -2.5 13.5 13.8 0.07 0.35 0.52

September 1999 2019 21 1.78 1.78 2.39 + + * 0.02 0.03 0.04 -2.9 13.4 13.4 0.49 0.57 0.88

October 1999 2019 21 1.96 0.94 1.90 * + 0.03 0.01 0.04 -3.1 14.0 13.6 0.73 0.27 0.85

November 1999 2019 21 2.08 1.54 2.08 * * 0.05 0.03 0.10 -3.1 14.0 13.0 1.06 0.63 2.07

December 1999 2019 21 2.20 2.33 2.24 * * * 0.06 0.06 0.18 -3.2 13.4 11.7 1.26 1.22 3.78

Yearly 2000 2019 20 1.65 2.24 2.24 + * * 0.02 0.07 0.13 -2.6 13.2 13.0 0.49 1.32 2.66

Test Z Significance Slope Constant Change
Time series First year Last Year n
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Synthetic data regression 

To make a proof of concept of the regression models that are going to be made on the 

measured data from Jyndevad a synthetic model is set up. Synthetic data for the 

groundwater table and soil water content at depths 25 and 60 cm was recreated using 

the Hydrus-1D model as well as the precipitation and potential evapotranspiration data 

from the site at Jyndevad. In figure 7 the results for the synthetic groundwater table are 

seen compared with the monthly series of data from Jyndevad. 

Synthetic data compared to measured data 

In figure 7 the synthetically created data is compared to the data from Jyndevad. This 

was the best approximation found, and the same tendencies can be seen for the 

measured and synthetic groundwater table. The synthetic model is more extreme in the 

peak and trough values, good examples of this can be seen for peaks in early 2004, 

early 2015, early 2016, and early 2018 and the troughs late 2010, late 2011, as well as 

late 2013 where there also seems to be a slight discordance in between synthesized and 

measured data as to whether the groundwater is rising or falling. 

 

Figure 7: The synthetic groundwater table based on the Hydrus-1D model is in red, with the monthly 
groundwater table in black. 

 



21 

 

Simple regression 

The next step is to use simple linear regression to predict the synthetic groundwater 

table using the weighted precipitation. This is done on both the daily synthetic 

groundwater table and the monthly averaged synthetic groundwater table.  

The daily model is seen in figure 8, it is calibrated on the total amount of data. The 

general tendencies are reflected, with rising and falling groundwater tables being 

captured quite well. Around 2017 is a case where the model does not capture very well 

what happens in the synthetic data, with the model fluctuating a lot, while there are 

clear peaks and troughs in the data. From around the year 2000 to 2008 the model 

captures the highest peaks well, while mostly overestimating the groundwater table 

between those peaks. From 2012 onwards the model seems to have trouble capturing 

the height of the peaks seen in the data. 

 

Figure 8: Simple regression on the total amount of the synthetic daily groundwater table. 

The monthly synthetic data was made to resemble the mean groundwater table that is 

used in the monthly series for the measured data. In figure 9 the monthly data are 

shown, the same trends that are present in figure 8 are also present here, overall, the 

model fits well although there are with the model hitting the peaks of the synthetic data 

and a period from around 2004 to 2008 where the model barely captures the troughs 

and differs from the data. 
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Figure 9: A simple regression for the total synthetic monthly groundwater table.  

In table 8 the RMSE and R2 values for both the daily and monthly models are shown. The 

daily model can explain 76% of the observed variation in the synthetic data, while the 

monthly model can explain 62%, which means that the weighted precipitation is able to 

explain much of the synthetic groundwater table. The RMSE is smaller for the daily 

model on daily data than for the monthly data. 

Table 8: The R2 and RMSE for the daily 1-variable model for the regression against the daily synthetic 
groundwater table and monthly model against the monthly synthetic groundwater table. 

  

Model Daily Monthly Daily Monthly

1 variable 0.76 0.62 0.31 0.38

Synthetic models
Total period

R2
RMSE
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Multiple regression 

The daily model seen in figure 10 shows agreement between the models and the data for 

large parts of the years. Some examples where there is a discordance between the data 

and the models is in late 2003, where there is a trough where all the models are off by 

around 0.5 m, with the worst performing being the two-variable model. Periods with 

great fluctuation in the data, such as late 2001 to late 2002, early 2006, and late 2015 

to early 2016 being examples. When the data rises or falls for a longer period the 

models do quite well. For the two-variable model it falls short for some of the peaks 

especially in 2015, 2016, 2018. 

There is variation between the models when comparing the statistics in table 9, where 

the five-variable model best predicts the data, and the two-variable model predicts 7% 

less than that model and has an error that is 0.07 m higher. 

 

Figure 10: Four daily multiple regression models trained on the total daily amount of synthetic groundwater 
table. 

In the monthly models in figure 11, it is easier to differentiate the models. The two-

variable model is the worst of the models at predicting the synthetic data, with this being 

especially noticeable from the beginning of the plot in 2001 until early 2006 when it is 

either much higher or much lower than the data. This period seems to be the hardest for 

all the models to predict, as they all have the same tendency, with the five-variable 

model being closest to the data. The models simulate the rise and fall of the 

groundwater table well, while reaching the peaks and troughs is not as well simulated 

and the smaller fluctuations also cause problems. 

Looking at the R2 and RMSE for the monthly models in table 9, the models seem to 

improve slightly per added variable, with the span being an increase of 0.13 for R2 and a 

decrease of 0.11 for the RMSE going from two to five variables. The biggest increase is 

going from two to three, within the multiple regression models although the biggest 

increase by far is going from one variable to two, which increases the model from being 

able to explain 62% to 80% of the variance of the data and a decrease of 0.1 m in the 

error.  
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Figure 11: The monthly multiple regression models performed on the total amount of synthetic groundwater 
table, which is shown in black. 

Comparing the statistics between the daily and monthly models in table 9 the five-

variable models are identical in these statistics, while for the rest of the models the daily 

models are slightly better, with the differences between them getting bigger the fewer 

variables used. When comparing with the simple regression results in table 8 this is 

when the biggest difference can be seen between the daily and monthly models, with the 

daily model having a R2-value that is 0.14 higher than the monthly and the RMSE being 

0.7 lower. The biggest gain for both the daily and the monthly model is obtained when 

going from the one-variable model to the two-variable model. 

Table 9: The R2 and RMSE of the daily and monthly multiple linear regression models calibrated for the total 
period of synthetic groundwater table. 

 

In table 10 the synthetic models are held up against the measured groundwater table. 

The models that perform worst for both the daily and the monthly models for the R2 are 

the 1-variable models while for the RMSE the same is the case for the monthly model 

but for the daily models the 3-, 4- and 5-variable models perform slightly worse. 

Compared to the fit of the synthetic models to the synthetic data seen in tables 8 and 9 

the only part where the fit is better in table 10 is for the R2 values for the daily model 

except for the 5-variable model, for the rest of the values the fit is worse. And while in 

tables 8 and 9 the models get gradually better with more variables this is not the case in 

table 10, with the best daily model being the 2-variable model and the best monthly 

model being the 3-variable model. In table 10 there is a big improvement in the metrics 

when going from one variable to two variables, while the addition of variables beyond 

that makes the daily model slightly worse as is the case for the 5-variable model for the 

Model Daily Monthly Daily Monthly

2 variables 0.86 0.80 0.24 0.28

3 variables 0.89 0.87 0.21 0.23

4 variables 0.91 0.90 0.19 0.20

5 variables 0.93 0.93 0.17 0.17

Synthetic models
Total period

R2
RMSE
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monthly model while the 4-variable model sees a slight increase in R2 and a slightly 

worse RMSE while the 3-variable model sees small improvement in both R2 and RMSE. 

Table 10: The daily synthetic models are compared used on the daily groundwater table, while the monthly 
synthetic models are compared to the monthly groundwater table. 

 

  

Model Daily Monthly Daily Monthly

1 variable 0.78 0.42 0.34 0.39

2 variables 0.94 0.72 0.30 0.31

3 variables 0.92 0.77 0.35 0.30

4 variables 0.92 0.75 0.35 0.32

5 variables 0.92 0.72 0.35 0.34

Synthetic compared to data
Total period

R2
RMSE
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Regression 

The first step for the regression analysis for the measured data from the site is to do a 

simple linear regression using the different measured variables to evaluate which ones 

could best describe the measured groundwater table.  

These tests can be seen in figure 12 where the R2 and the RMSE are plotted in blue in 

the figure, with the two left side plots showing the daily data and the two plots on the 

right side showing the monthly plots. As can be seen in the figure the best fit for the raw 

data is the soil water content at depth 190 cm which has a R2 value of around 0.8 for 

both the daily and monthly groundwater table, while also having RMSE values of below 

0.2. The reason for this is that the groundwater table is quite close to this depth, with 

the mean value of the groundwater table being close to this depth, which means that 

this value is acting as a proxy value for the groundwater table. This also means that 

using this variable or those around the depth at which the groundwater table fluctuates 

within is close to being the same as using the groundwater table to predict itself. 

Therefore, the soil water contents from 93 cm and down are excluded, as they are within 

the depths at which the measured groundwater table fluctuates within.  

Notably the worst fit of all the raw variables is the precipitation, with it having the lowest 

R2 values and the highest RMSE values, except for the soil water content at depth 60 cm 

which is worse. This is noteworthy as this variable would be expected to have a 

significant impact on the groundwater table. What may be missing is the temporal 

aspect, as it would be expected that there is a lag between precipitation events and the 

impact it would have on the groundwater table.  

 

Figure 12: The R2 and RMSE values for the daily and monthly series. The values for the raw data are shown 
with a blue cross, while the weighted data are shown with a red asterisk. 

That is why a weighting is put on the variables to evaluate if this kind of weighting will 

impact the fit of the variables. The specific weighting is the above-described weighting 

where the measurements from the past year are used. The red points in the plot show 

the fits of these weighted variables. The weighting improves the how well the 

precipitation describes the groundwater table, improving it to the level that is quite like 

what the soil water depth at 190 cm had.  
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Simple regression 

The following regressions give the total length of the groundwater table for calibrating 

the models. The model in figure 13 is calibrated against the groundwater table seen in 

black in the figure. This model uses the weighted precipitation as the explanatory 

variable and the daily groundwater table as the variable to be predicted. The monthly 

data has also been added to the figure to get an idea for how well the periods with no 

daily data fit.  

Even with only one variable there is quite a high correlation between the lines, which can 

also be seen by the values for R2 and RMSE reported in table 11, with the R2 being 0.82 

and the RMSE 0.19, which means that the weighted precipitation can explain around 

82% of the variation the groundwater table and that the model has an error of around 

0.19 m. The drawback is that the time series is short compared to the other available 

daily time series. Looking at the figure it never follows the data completely, but the 

tendencies seen in the data are mostly followed by the model seen in figure 13. 

 

 

Figure 13: Simple regression, with the model in red, the daily groundwater table values in black, and the 
monthly groundwater table in blue. 

In figure 14 a simple regression using only the weighted precipitation has been done for 

the total amount of monthly groundwater table data. The model fits worse than the daily 

model did on the daily data, there is still an overall fit in the tendencies, except for a few 

cases like in late 2005 to early 2006, where the groundwater table for the data and the 

model have opposite movements. Still the model mostly follows the tendencies that the 

data has although it does have problems reaching all the peak values of the data in the 

beginning of the years.  

The values for the fit of models in table 11 show that the R2 and RMSE of the monthly 

model is worse than that of the daily model. With the model being able to explain 67% 

of the variation of the data and the RMSE being slightly worse. This still means that two-

thirds of the variation can be explained by only the precipitation for the monthly and 

more than 80% for the daily model. But we would expect other variables to also 

influence the groundwater table, which is why the next step will be multiple regression. 
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Figure 14: The fit of the model based on the weighted precipitation for the total period of monthly data, with 
the simple regression model in red and the groundwater table data in black. 

Table 11: The coefficient of determination and the root mean square error for the regressions using weighted 

precipitation as the dependent variable. 

 

Multiple regression 

In these multiple regression models the models with 2, 3, 4 and 5 variables are used and 

evaluated. They are done both for the daily and the monthly data. 

In figure 15 the models are compared to the daily data in black and the monthly data in 

blue. The models fit quite closely to the daily data and follow each other quite closely.  

The monthly data has been included to give an idea of where the groundwater table 

would be in the two years when the daily data is missing, to evaluate if the models have 

the same tendencies as the data and looking at it the models have the same trend as 

the data with the 5-variable model performing worst. The model that differs the most is 

the 5-variable model, which differs for these two periods, and it is also absent from the 

period where daily data is present in 2017 to 2018 and 2019 to 2020, as it relies on the 

groundwater table from last year. This also only gives it three years where it is evaluated 

in comparison to the other models which are compared for five years. The difference 

between the models and the data is minor in comparison to the 1-variable model in 

figure 13, but there are instances where the models do not catch up to the peaks and 

troughs of the data, as seen in the trough in late 2013 and the peak in early 2016, or it 

lags behind the data when the groundwater table is falling, as seen in early 2014 and 

early 2018, also it seems that for some periods the models fluctuate more than the data, 

as seen in the trough in late 2015 and when the groundwater table is falling in mid-

2014. 

Regression for 

the total period
R2 RMSE

Daily 0.82 0.19

Monthly 0.67 0.22
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Figure 15: Multiple regression for the total duration of daily data. The models containing 2 to 5 variables are 
plotted against the daily groundwater table. 

When comparing the fits of the models in table 12 they are almost identical and if a third 

decimal place were not included the only difference would be that the RMSE for the five-

variable model is slightly lower. Compared to the one-variable model there is an 

improvement for both the R2 and the RMSE, while the multiple regression models 

themselves are almost identical in this regard. 

Table 12: The R2 and the RMSE for the models with 2, 3, 4 and 5 variables that have been regressed against 
the total period of daily groundwater table data. 

 

In figure 16 the fit for the multiple regression models against the monthly data is shown. 

When comparing the multiple regression models with the simple regression model in 

figure 14, there are several improvements that can be seen, among these being that the 

models follow the data much more closely and they are better at reaching the peaks that 

was a problem for the 1-variable model. Also, the discordance for the simple model and 

the data seen in early 2006 is not seen in these models. But there are points where the 

simple model was better at modeling the data, such as in late 2013 where the data has a 

small peak in between the two bigger peaks, the simple model was able to approximate 

this while the multiple regression models have a trough that goes quite low. In late 2004 

the simple model better approximates the trough that is seen there, while the multiple 

models go to a much lower depth of around 3 m. There are still a few places where the 

models do not capture the highs and lows of the model, such as the peaks in start 2002, 

2003, and 2005, where the models fall short and the troughs in mid to late 2008, 2009, 

and 2011, where the models are a little too shallow. 

Regression for the total 

period - daily
R2 RMSE

2 variables 0.958 0.092

3 variables 0.959 0.092

4 variables 0.962 0.089

5 variables 0.960 0.077
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Figure 16: The multiple regression models compared to the monthly groundwater table data, shown in black. 

In table 13 the statistics for the fit of the multiple regression models are shown, again as 

for the daily models they are quite similar again, although the difference is slightly 

bigger for the R2 and smaller for the RMSE. The best fit of the models is for the 5-

variable model.  

Table 13: The R2 and the RMSE for the multiple regression models that have been compared to the monthly 
groundwater table. 

 

  

Regression for the total 

period - monthly
R2 RMSE

2 variables 0.833 0.159

3 variables 0.842 0.156

4 variables 0.846 0.153

5 variables 0.848 0.151
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Calibration and validation 

In this part different calibration lengths are evaluated for the different models. The part 

of the data that is not used for calibration is used for the validation. The fit of the models 

is reported for the calibration data, the validation data, as well as the total available 

amount of data. The models are calibrated from the beginning of the time series as well 

as from the end of the time series. 

Daily models 

For the daily models only the models with one to four variables are used, as the amount 

of groundwater table data is quite limited and will not be sufficient to make a calibration 

and validation model using the old groundwater table data that the five-variable model 

uses. 

There are two calibration lengths evaluated for the daily models. For the first scenario 

the models are fed one year of data, and for the second scenario they are fed three 

years of data. The exact number of days where both model results and groundwater 

table measurements are present for both scenarios is also reported. The figures and 

tables for an additional calibration length of two years are in the appendix in figures 26 

and 27 and in tables 31 to 33. 

One-year calibration 

In figure 17 the models calibrated from the beginning are seen, while in figure 18 the 

models calibrated from the end are seen both for the first scenario. The corresponding 

R2-values can be seen in table 14 and the values for RMSE are seen in table 15, while in 

table 16 the number days used in the various phases are shown. 

For all the models seen in figure 17, except for the one-variable model, it is hard to 

distinguish between the models containing 2, 3, and 4 variables, as mostly these models 

overlap. For the calibration period the models have good fit with the model, except for 

the one-variable model which is quite limited in the highs and lows. For the total length 

of the time series the model with one variable never seems to hit the peaks or troughs 

the groundwater table data does, and barely goes below -2 m and above -1 m, keeping 

that model quite constricted. The other models do seem to follow the groundwater table 

data very well when it rises sharply towards the surface but seems to lag when it falls 

again; this can be seen in the beginning to middle of the years, especially in 2014 and 

2018. 

In figure 18 the fit of the models is best for the calibration period. The 1-variable model 

differs most from the other models. As opposed to the forward calibrated model it is 

better at fitting the extreme values. It fits best for the calibrated period and the multiple 

regression models again follow the same tendencies although the 2-variable model has a 

slightly higher groundwater table than the 3- and 4-variable models. 

There are noticeable differences between the models in figure 17 and figure 18, while for 

the model calibrated from the beginning there is barely a difference between the 2-, 3-, 

or 4-variable models, while in the backward calibrated model the two-variable model is 

slightly higher than those two other models. For both calibration methods of the models 

the worst fit is for the one-variable model, with the forward run model being much more 

limited in the range compared to the backward run model which spans wider. 
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Figure 17: The forward calibration for the first scenario, with the dashed line separating the calibration period 
on the left side and the validation period on the right side.  

 

Figure 18: The reverse calibrated model, with the right side of the dashed line showing the calibration period 
and the left side of the line showing the validation period. 

The R2-values in table 14 the values for the total run of the models are quite similar for 

both the forward and backward calibrated models, the model calibrated from the 

beginning has slightly better values, with the models with two or more variables being 

almost the same and the 1-variable model being the worst for both. The model 

calibrated from the end performs better for the calibration period but worse for the 

validation period, which results in a slightly worse total period, which makes sense as 

the validation period is longer. 

The RMSE values in table 15 are worst for both models for the 1-variable model. The 

RMSE is lower for the model calibrated from the beginning for all three phases and the 

error is almost the same for the 2-, 3- and 4-variable models within each phase. For the 

model calibrated from the end there is a slightly bigger difference, 0.03 to 0.04 m, 

between the errors for the 2-variable model and the 3- and 4-variable model for the 
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validation and total length, with the 2-variable model having the lowest error for those 

two phases.  

When comparing the R2 and RMSE for the models calibrated on one year of data and the 

statistics of those models calibrated on the total length of the daily time series in table 

11 and 12 to the results in tables 14 and 15, the values are not that far apart. For the 

forward run models, the R2 is almost identical, while for the backward run model it is 

around 0.01 to 0.03 smaller, while the RMSE is noticeably worse, 0.05 to 0.06 m, for the 

3- and 4-variable models that are calibrated from the end and slightly less so for the rest 

of the runs.  

In table 16 the number of days for each period is seen. The lengths are almost identical 

for the differently calibrated models and the data that has been validated on is around 

five times as much data as it was trained on. The available days for the 1- and 2-

variable models equals the available groundwater table data, as these series are 

unbroken. The missing days for the 3- and 4-variable models is caused by the time 

series used in these models, the soil water content at different depths, having gaps in 

the time series. 

Table 14: The results for R2 for the model calibrated for one year of daily data from the beginning (B) and the 
end (E) of the time series.  

 

Table 15: The RMSE for the models calibrated from the beginning, B, and the end, E, for the daily data. 

 

Table 16: The days used in for the calibration, validation, and the total number of days for the four models for 
both the calibration models. 

 

Scenario B E B E B E

1 variable 0.501 0.869 0.822 0.776 0.789 0.789

2 variables 0.966 0.982 0.956 0.934 0.957 0.945

3 variables 0.969 0.984 0.955 0.930 0.956 0.939

4 variables 0.969 0.984 0.958 0.928 0.958 0.937

Calibration and 

validation - daily Calibration Validation Total

R2

Scenario B E B E B E

1 variable 0.197 0.221 0.230 0.247 0.225 0.243

2 variables 0.052 0.082 0.113 0.121 0.105 0.115

3 variables 0.049 0.078 0.120 0.151 0.111 0.142

4 variables 0.049 0.078 0.125 0.161 0.116 0.150

Calibration and 

validation - daily Calibration Validation Total

RMSE

Total

Scenario B E B E B,E

1 variable

2 variables

3 variables 1723 1721 2058

4 variables 1718 1716 2053

1825 2177

Days

365

337

1812

Days available for 

calibration and validation

352

335

Calibration Validation



34 

 

Three-year calibration 

In figures 19 and 20 the models are calibrated on three years of data, and they are 

calibrated from the beginning and the end of the time series, respectively. The biggest 

differences between them are for the 1-variable model that is the worst fitting of the 

models in both cases, with it being more constricted in the forward run model. The 1-

variable model only very occasionally fits well with the data compared to the other 

models, mostly being above or below the measured value. Looking at the other models 

there are cases where one model fits better, but this is also usually in the calibration 

phase, such as late 2013 to early 2014, which fits better in figure 19, and the peak in 

2020, which fits better for figure 20, where the models calibrated on the data mentioned 

perform better.  

 

Figure 19: Calibration from the beginning of the time series, with the dashed line showing the boundary 
between the calibration period, on the left, and the validation period, on the right.  

The values for the R2 and the RMSE in tables 17 and 18 are quite similar, what is worth 

noticing is that for the model calibrated from the beginning the R2 values are slightly 

worse for most of the calibration period, than the validation period, while the opposite is 

the case for the RMSE. Usually, it would be expected that the calibration period is when 

the data has the best fit, which is also the case for the calibrated from the end. 

Evaluating the models on the total groundwater time series the models with multiple 

variables are comparable except for the 4-variable model which is slightly worse in both 

fits. The best fits overall are for the 2-variable model, although by a very slim margin. As 

the calibration and validation periods have more or less just been flipped as each period 

is around three years of data it makes sense that the results for each are similar. The 1-

variable model is the same for both calibration methods in the R2 while the model 

calibrated from the beginning is slightly better in the RMSE. 

As seen in table 19 the calibration and validation values for both the models are almost 

equal and the amount of data used for calibration and validation is close to being the 

same.  
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Figure 20: The calibration from the end of the time series, the calibration period is on the right of the dashed 
line, with the validation period on the left of the line.  

Looking at both the calibration lengths the differences are barely noticeable between the 

models, with all the models being quite similar for both lengths of calibration and with 

the 2-, 3-, 4-variable models performing quite equally, though the 2-variable model 

performs the best on the total time series for all the scenarios. 

Table 17: The R2 for the daily models with three years of calibration going from the beginning of the time 
series as well as the end of the time series. 

 

Table 18: The RMSE for the three-year calibration from the beginning and end for the daily models. 

 

Scenario B E B E B E

1 variable 0.692 0.852 0.852 0.692 0.789 0.789

2 variables 0.951 0.962 0.961 0.949 0.958 0.957

3 variables 0.953 0.962 0.959 0.950 0.957 0.957

4 variables 0.955 0.967 0.944 0.934 0.948 0.956

Calibration and 

validation - daily

R2

Calibration Validation Total

Scenario B E B E B E

1 variable 0.188 0.187 0.230 0.244 0.210 0.217

2 variables 0.075 0.095 0.111 0.090 0.095 0.093

3 variables 0.074 0.096 0.112 0.091 0.095 0.094

4 variables 0.072 0.090 0.125 0.101 0.103 0.095

Calibration and 

validation - daily

RMSE

Calibration Validation Total
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Table 19: The days available for each model for both the three-year calibration period running from the 
beginning and the end. 

 

The differences between the results for the models calibrated on three years of 

groundwater table seen in tables 17 and 18 for the R2 and the RMSE and the values for 

the models calibrated on the total length of groundwater table in tables 11 and 12 is 

minor with the biggest differences being that the 1-variable model is worse, and the 4-

variable model calibrated from the beginning performs slightly worse.  

Total

Scenario B E B E B,E

1 variable

2 variables

3 variables 1047 1052 1011 2058

4 variables 1045 1047 1008 2053
1006

Days available for 

calibration and validation

Days

Calibration Validation

1094 1095 1083 1082 2177
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Monthly models 

The same calibration and validation models are also done for the monthly data, and they 

are also done with calibration from the beginning of the time series and from the end. 

This is done for a total of five models and for two different calibration lengths. Additional 

figures and tables for a calibration length of 90 months are in the appendix in figures 28 

and 29 and in tables 34 to 36. 

60 months of calibration 

In figure 21 the models calibrated on 60 months of data from the beginning are shown. 

The models with 2-, 3-, and 4-variables are quite like one another, with the two latter 

being almost indistinguishable and the first differing slightly from these. The 1- and 5-

variable models differ more from the other models and each other. In the calibration 

phase both the 1- and 5-variable models fit quite poorly. All the models barely hit the 

peaks that the data does, which can be seen in large parts of the validation phase, 

especially in the beginning of the years from 2014 onwards, but also during the 

calibration, particularly in early 2002.  

When looking at the statistics in tables 20 and 21 the worst performing model is the 5-

variable model, which is worse than the 1-variable model, except for the R2 in the 

calibration phase, in both RMSE and R2, while the best performing model is the 4-

variable model, with the 3-variable model being quite similar in its performance. 

For the models calibrated from the end in figure 22, the models fit very well with the 

peaks and mostly fit well with the data. The models sometimes overshoot as seen in the 

trough in late 2003 and the peak in late 2007. The 1-variable model has the worst fit 

with the data, going the opposite direction to the data in late 2005 to early 2006 and 

being higher than the other models at multiple occasions such as late 2007 and late 

2015, where the other models are also higher than the data. A noticeable disagreement 

between all the models and the data can be seen in late 2013. Overall, the models seem 

to perform best when there is a sharp rise or fall into a clear peak or trough, and smaller 

fluctuations, such as the period during the calibration phase from early 2016 to later 

2017. 

The R2 and RMSE for the backward run model are shown in tables 20 and 21. The 1-

variable model performs the worst in all metrics for all the phases, while in the 

calibration phase the 3- and 4-variable model perform best, in the validation phase those 

same as well as the 5-variable model perform well and for the total length the best 

performing model is the 5-variable model closely followed by the 4- and 3-variable 

models and the 2-variable model is slightly behind that. 

When comparing the two figures 21 and 22 the beginning period from 2001 to late 2006 

seems to be the period of the data that is hardest for both calibration methods to fit. The 

models that have been calibrated from the beginning have been calibrated on that period 

of data. Therefore, those models have a worse fit overall compared to the model 

calibrated from the end. The R2 in table 20 for the different calibrations are noticeably 

different, with the calibration period from the forward run model performing much worse 

than the other model and the calibration period performing worse than the validation 

results, which is the opposite of the expected result, which is that the calibration period 

has a better fit than the validation period. When looking at the RMSE in table 21 the 

model calibrated from the beginning is worse in all phases when compared to the model 

run from the end. When comparing their fit for the total time series the end-calibrated 

model has an overall better fit, with the 1-variable models being most alike for the total 

period and the biggest difference for the total period being for the 5-variable models.  
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Figure 21: The calibration length used is 60 months and is indicated with the dashed line, with the data on the 
left of it being used for calibrating the models and the data on the right being used for validation. 

 

Figure 22: The models are calibrated from the end of the time series, which is on the right side of the dashed 
line and validated on the data on the left of the dashed line. 

Table 20: The R2 values for the calibration period of 60 months with the values for both the calibration from 
the beginning and the calibration from the end of the time series. 

 

Scenario B E B E B E

1 variable 0.511 0.878 0.705 0.558 0.668 0.668

2 variables 0.767 0.951 0.823 0.751 0.798 0.822

3 variables 0.819 0.958 0.824 0.780 0.807 0.839

4 variables 0.820 0.958 0.830 0.781 0.812 0.841

5 variables 0.575 0.947 0.622 0.777 0.612 0.845

Calibration and 

validation - monthly

R2

Calibration Validation Total
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Table 21: The RMSE for the 60-month calibration period, with the results for both the calibration from the 
beginning and the end of the time series. 

 

When looking at table 22 where the available months are seen for the models, the 

forward run model has about a year less of data compared to the calibration from the 

end. As the 1- and 2-variable models are based on precipitation and evapotranspiration 

and those series are unbroken, the months used by those models equal the available 

groundwater table data. So, comparing those models to the ones with 3-, 4- and 5-

variables the calibration from the end has more available data for the calibration period 

as the values are almost the same for all models when the models are calibrated from 

the end. Both the gaps in the groundwater table data from the beginning of the time 

series as well as the gaps in the soil water contents have affected that the results of the 

forward run models are slightly worse than the model run from the end. 

Table 22: The months of data available for the models based on the groundwater table data and the presence 
of the variables used for the models.  

 

120 months of calibration 

In this section the models calibrated on a period of 120 months are shown, the exact 

number can be seen in table 25. The calibration from the beginning is shown in figure 23 

and the calibration from the end is shown in figure 24.  

Many of the same faults found in the models with 60 months of calibration in figures 21 

and 22 are also found in figures 23 and 24. Overall, the figures are quite similar for the 

models calibrated the same way. The biggest differences in the models calibrated from 

the beginning seem to be that the models are slightly closer to the data, such as the 

peaks in 2014, 2015, 2016 and 2018. For the model calibrated from the end a slight 

improvement can be seen for the trough in late 2003.  

Comparing the R2 and the RMSE for the 120-month calibration models, which can be 

seen in tables 23 and 24, the calibration from the end gives the better results in all 

metrics except for the R2 for the validation and for the total time for the 1-variable 

model where both models are equal. This is the same that was seen for the models 

calibrated on 60 months of data and compared to those the biggest improvement is seen 

Scenario B E B E B E

1 variable 0.229 0.167 0.255 0.265 0.250 0.242

2 variables 0.158 0.105 0.223 0.200 0.211 0.180

3 variables 0.143 0.098 0.225 0.199 0.211 0.177

4 variables 0.143 0.098 0.223 0.198 0.209 0.176

5 variables 0.239 0.112 0.311 0.178 0.299 0.163

Calibration and 

validation - monthly

RMSE

Calibration Validation Total

Total

Scenario B E B E B,E

1 variable

2 variables

3 variables

4 variables

5 variables 38 56 164 146 202

Months available for 

calibration and validation

Months

Calibration Validation

47 59 172 160 219

42 59 169 152 211
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for the model calibrated from the start of the time series, which is better in almost every 

metric, while the improvement for the other models is negligible in comparison. The best 

models for the total length of the 120 months of calibration from the end are the 4-

variable model, which performs best for the R2-values and the 5-variable model which 

performs best in the RMSE, closely followed by the 3-variable model and the 2-variable 

model. For the model calibrated from the start the RMSE is lowest for the 2-variable 

model and the R2 highest for the 4-variable model and those along with the 3-variable 

model are performing well. The 5-variable model is improved compared to the 60-month 

calibration, but still performs worse than the other models. The worst performing model 

in both cases is the 1-variable model which performs the same for the 60 and the 120 

months of calibration time with only small variations in the RMSE differentiating these. 

 

Figure 23: The models are calibrated with 120 months of data from the beginning of the time series with the 
calibration period on the left side of the dashed line and the validation period on the right side. 

 

Figure 24: The models are calibrated with 120 months of data from the end of the time series with the dashed 
line dividing the calibration period on the right and the validation period on the left. 
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Table 23: The R2 for the models calibrated on 120 months of data, both from the beginning and the end of the 
time series. 

 

Table 24: The RMSE of the models using 120 months for the calibration from both the beginning and the end of 
the time series. 

 

Again, as in the models calibrated on 60 months of data there is more data used for the 

calibration from the end and the variable data is more intact from this end. As can be 

seen in the total the models with 1 and 2 variables have 219 points of groundwater table 

data to compare to, while the 3- and 4-variable model only has 211, as the three extra 

variables limit the number of months that overlap where both the data and variables are 

present. The difference between the total amount of months is eight and the difference 

for the months of calibration for the forward run models with 1- and 2-variables and 

models with 3- and 4-variables is eight, meaning that all of months where soil water 

content is missing are in the calibration months of the model calibrated from the 

beginning. 

Table 25: The months of data available where both groundwater data and model variables are present for both 
calibration period and validation period as well as the total length of the time series. 

 

  

Scenario B E B E B E

1 variable 0.516 0.796 0.790 0.507 0.668 0.668

2 variables 0.812 0.902 0.857 0.757 0.816 0.826

3 variables 0.849 0.907 0.879 0.804 0.819 0.839

4 variables 0.853 0.908 0.879 0.810 0.828 0.842

5 variables 0.752 0.895 0.787 0.791 0.748 0.841

Calibration and 

validation - monthly

R2

Calibration Validation Total

Scenario B E B E B E

1 variable 0.233 0.185 0.257 0.279 0.246 0.233

2 variables 0.145 0.128 0.218 0.214 0.187 0.173

3 variables 0.132 0.124 0.237 0.212 0.196 0.170

4 variables 0.130 0.123 0.228 0.211 0.190 0.169

5 variables 0.177 0.134 0.285 0.194 0.243 0.163

Calibration and 

validation - monthly

RMSE

Calibration Validation Total

Total

Scenario B E B E B,E

1 variable

2 variables

3 variables

4 variables

5 variables 90 114 112 88 202

96 114 115 97 211

Months available for 

calibration and validation

Months

Calibration Validation

104 117 115 102 219
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Daily model for the monthly data 

In figure 25 the results are shown for the daily models calibrated on the total amount of 

daily data and are used to predict the monthly groundwater data. Compared to the 

monthly models calibrated on the total length of groundwater data, which are seen in 

figure 14 and 16, the models are not as good at getting the exact right values of the 

groundwater table but are good at capturing the trends of the rising and falling 

groundwater table quite well, the 1-variable model being the exception. The other three 

models align with each other most of the time and are mostly hard to distinguish from 

each other. For the timespan when daily data is present the models perform well, which 

makes sense as the models have been calibrated on this data, while for the monthly 

data there is a bigger offset between the models and the data. 

 

Figure 25: The daily model used on the monthly data, with the daily data also shown. The presence of data is 
shown with a dot on the lines, which in this figure are all linked with lines even when there are missing months 
between the dots. 

The R2 and RMSE for the daily model fitted against the monthly data is shown in table 

26. When comparing the R2-values against the values for the monthly model in tables 11 

and 13 the values for the 2-, 3- and 4-variable models are very similar to the results of 

the monthly model, while the 1-variable model is worse. When comparing the RMSE 

against the monthly model in tables 11 and 13 the values are noticeably worse for all the 

models, being around 0.11 m higher. This is quite a high number and is also noticeable 

in figure 25, where the models do not align as well with the data as when compared to 

the monthly models in figures 14 and 16. 

Table 26: The R2 and RMSE for the daily model used on the monthly data. 

 

  

1 variable 0.577 0.329

2 variables 0.848 0.269

3 variables 0.846 0.267

4 variables 0.843 0.265

Daily model on 

monthly data
R2 RMSE
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Discussion and conclusion 

In the trends shown in the results, the trends were increasing at a significant rate for 

both the temperature and the potential evapotranspiration, while the same is not the 

case for the precipitation even for a timespan of 36 years. If more data were present, it 

might be that a trend with some form of significance level could be found for the 

precipitation. It would be expected that if both the temperature and the potential 

evapotranspiration have a significant upward trend and the precipitation stays the same, 

that the groundwater table would see a fall. But this is not the case for the trends 

shown, with the yearly groundwater table seeing a significant upward trend. It could be 

speculated that the precipitation also has an upward trend but that more data would be 

needed to find it at a significant level, as the precipitation seems to fall more randomly 

over the years. It would also be interesting looking at the other PLAP fields to see if the 

same trends are seen for all the places or if a trend can be seen for the same variables 

at those sites. 

The linear weighting used is quite simple to implement and is based on the assumption 

that the data that lies before has an accumulative effect on the present-day groundwater 

table, in this case a year before and favors the more recent data. The weighting used is 

not necessarily the most descriptive for what is taking place but as can be seen in the 

results it is quite robust and for the variables it is used on it can help explain most of the 

change seen in the groundwater table. The weight is linear and uses a year of data. Both 

of these factors could be changed using e.g., a Poisson distribution and playing with the 

amount of data that is used for the weighting and finding the optimal for the chosen 

variables. Further work that could be done is to further explore other types of weighting 

that may better reflect the effect that the precipitation and potential evapotranspiration 

has on the groundwater table. 

Looking at the results of the daily regression models in tables 11 and 12, which use the 

total amount of data as calibration, the worst performing daily model is the 1-variable 

model with the other models performing similarly and better in both R2 and RMSE.  

When comparing the results for the calibration on the total amount of data to the models 

validated on the total amount of data using one year of data as calibration either from 

the beginning or the end of the time series seen in tables 14 and 15 the best performing 

model is the 2-variable model. The R2 is almost identical in the forward run model and 

off by 0.013 in the backward run model when compared to the values in table 11 and 

12, while for the RMSE the values are off by 0.013 and 0.023 for the forward run and 

backward run 2-variable model. This is the best performing of the models with the 3- 

and 4-variable models being more off in both the R2 but also in RMSE. 

When comparing the R2 and RMSE in tables 11 and 12 with the ones for the total length 

of time series in tables 17 and 18, which have been calibrated on three years of data, 

the best performing models are the 2- and 3-variable models, which are almost identical 

in R2 and RMSE compared to the values in table 11 and 12, while the 4-variable model is 

not far behind although the forward run model is slightly worse in both R2 and RMSE 

being off by 0.01 in both. 

Overall, for the daily models the 2-variable model seems to perform the best overall and 

being the most robust both in the amount of calibration data needed and being a quite 

simple model. The 2-variable model is much improved compared to the 1-variable model 

and adding more variables does not add much to the models. 

In the calibration validation for the daily data the amount of calibration data does not 

make a substantial difference for the quantity of data present here. It is a short time 
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series for the groundwater table compared to the length of some of the other daily time 

series. The weighting of the precipitation and the evapotranspiration do give the models 

a lot of information about the previous year, so even though the calibration is only for a 

year the weighted variables contain information relating to the previous year. 

For the monthly models in tables 11 and 13 the 1-variable model is the worst performing 

model in both RMSE and R2. With the 2, 3, 4 and 5 variable models increasing slightly in 

R2 and decreasing slightly with RMSE with each variable. 

When comparing with the model calibrated on 60 months of data and validated on the 

total amount of data which can be seen in tables 20 and 21 again the 1-variable model 

performs bad, but the 5-variable model actually performs worse than all the other 

models in the data calibrated from the beginning and better than all the models when 

calibrated from the end the difference in R2 for the good and the bad model is 0.23 and 

for the RMSE it is 0.13 m which is a big difference. The backward and forward calibrated 

2-, 3- and 4-variable models differ 0.02 for the 2-variable model and 0.03 for the other 

two models in the R2, while for the RMSE the difference is 0.03 m. This is low in 

comparison to the 5-variable model.  

For the models calibrated on 120 months of data which are seen in tables 23 and 24 the 

R2 and RMSE validated on the entire period do improve compared to the values for the 

60 months of calibration, although the models calibrated from the beginning still perform 

worse than those calibrated from the end, with the 5-variable model still performing very 

badly. 

Although the 2-, 3- and 4-variable models perform quite similarly, the addition of 

variables beyond the two does not improve the performance much, sometimes even 

making it worse. The improvement when going from the 1-variable to the 2-variable 

model is more notable. 

The daily models used on the monthly data in table 26 perform quite a lot like the 

monthly models in table 11 and 13 when it comes to R2, except for the 1-variable model 

which performs worse but is much worse when it comes to the RMSE where it is 0.11 m 

higher. Although the daily model has been trained on more data points, it has a shorter 

time horizon than the total length of the model but is similar in length to the 60-month 

calibration period, which has a better RMSE. 

As can be seen for the monthly models in particular, the period chosen for calibration 

can have a big effect on how well the regression model performs. With the 5-variable 

model being especially vulnerable, the 1-variable model being the least vulnerable, and 

with the 2-, 3- and 4-variable models being affected, but still close to the model modeled 

on the total amount of data. So, while those three models do perform worse when 

calibrated on uncharacteristic data, the results are still quite robust. 

The 1-variable model performs quite similarly for all the calibration methods, while the 

5-variable model is the most vulnerable either being slightly better than the other 

models or much worse than all but the 1-variable model. The middle ground between 

those models are the 2-, 3- and 4-variable models which all perform better than the 1-

variable model in all cases. 

Other factors may also affect the groundwater table, factors that are outside the field at 

Jyndevad, such as a change in the number of trees. A change in groundwater table is not 

the same as a change in recharge 

Although for the monthly calibration and validation there some of the models with more 

variables perform slightly better, the 2-variable model is quite robust, while being quite 
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a simple model. Precipitation is easily available for most areas, while potential 

evapotranspiration can be calculated based on temperature and radiation. The variables 

used in the 2-variable model make sense in a hydrological perspective as it would be 

assumed that the main input is the precipitation and evapotranspiration would be a 

limiter on how much of the water reaches the groundwater table. The same would be the 

case for the recharge. 

Although the 3- and 4-variable models do improve the models in some cases it is usually 

a minor improvement and the soil water content at those depths do not help much in the 

model and are also not necessarily readily available at most sites. 

The worst performing model is the 1-variable model, which uses only the weighted 

precipitation. But although it is only worse when compared to the other models. It can 

explain quite a lot with a minimum of input. 

The inclusion of the groundwater table from the past year was done to get a model that 

would be the best, as this model performed quite well for some tests, e.g., the synthetic 

models and in the total regressions in table 12 and 13. The model is not very feasible in 

a real-world scenario as the groundwater table is used to predict itself. The model that 

includes the variable is very variable and is not particularly useful. 

In the ideal scenario which is used when making models for the synthetic data each 

added variable increases the R2 and decreases the RMSE. This happens for both the daily 

and monthly synthetic data. But when using the measured data the same is not the 

case. It is interesting to note that the synthetic models in tables 8 and 9 perform worse 

in both R2 and RMSE than the regression models based on the measured data in tables 

11 to 13. 

The time discretization that would make most sense for making a model is the daily 

measurements and a longer daily series would be an interesting case to work with and 

the actual evapotranspiration could be of interest. 

Further work would be to investigate other methods of machine learning such as long 

short-term memory (LSTM), which is a type of recurrent neural network typically used 

for time series forecasting. This approach could be used to try improving upon the 

model, although it would require more time and not necessarily improve much on the 

results.  

The models found here could be evaluated for the other sites within PLAP. Testing the 

model found for this sandy site on the other sandy site in Tylstrup could be further work. 

Also, whether the 2-variable model with the same type of weighting would perform 

similarly on the other sites within PLAP, both the sandy and clayey till sites.  

Overall, the regression models can simulate the groundwater table quite well using only 

the 2-variable model which consist of data that is easily available for most areas in 

Denmark.  
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Appendices 

MATLAB code example 

Example of MATLAB code (in italics): 

%% Read data and convert to timetable 

data = readtable('C:\...\Data.xlsx'); 

ttdata = table2timetable(data); 

%% weighting of precipitation and evapotranspiration 

step = 1/364; 

w = 0:step:1; 

w = w'; 

P = ttdata.Precip 

PET = ttdata.PEvap 

start = aaa % define start 

end = zzz % define end 

wP=[]; 

wPET=[]; 

for i=start+365:end 

    Pr(i) = sum(P(i-364:i).*w); 

    wP(i-364) = Pr(i); 

    Et(i) = sum(PET(i-364:i).*w); 

    wPET(i-364) = Et(i); 

end 

wP = (wP'/182.5); 

wPET = (wPET'/182.5); 

%% Define other variables 

GWT = ttdata.GWT(start+365:end) 

GWTold = ttdata.GWT(start:end-365) 

S25 = ttdata.S25(start+365:end) 

S60 = ttdata.S60(start+365:end) 

PETw = wPET 

Pw = wP 

%% 5 variables / daily 
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%% All these variables need to have the same length and fit with the dates 

X = [S25, S60, GWTold, PETw, Pw]; 

mdl = fitlm(X,GWT) 

%% For plotting the model results 

x1 = S25; 

x2 = S60; 

x3 = GWTold; 

x4 = ET; 

x5 = Pw; 

estim = mdl.Coefficients.Estimate; 

y1 = estim(2)*x1 + estim(3)*x2 + estim(4)*x3 + estim(5)*x4 + estim(6)*x5 + 

estim(1); 

 

Constants for the regression models 

When doing linear regression analysis each independent variable results in a constant 

being multiplied to this variable as well as a constant term that is added to the equation. 

In the tables 26 to 29 these constants that are part of the regression equation and 

denoted in the equation in the method section as 𝛽 are shown with each column showing 

the values that the constants would have for the different models. Interc. is the intercept 

with the y-axis while the remaining values are the constants that are used on the 

variables to get the best linear regression fit. 

 

Table 27: The best estimates for the constants in the regression models for the daily measured groundwater 
table.  

 

Interc. Pw PETw S25 S60 GWTold

1 variable -4.11 0.80 - - - -

2 variables -3.01 0.68 -0.44 - - -

3 variables -3.01 0.70 -0.44 0.00 - -

4 variables -2.97 0.73 -0.43 0.00 -0.02 -

5 variables -2.48 0.63 -0.33 0.00 -0.01 0.22

Regression models for the 

total period - daily

Constants



50 

 

Table 28: The best estimates for the five regression models for the total length of the daily synthetic time 
series. 

 

Table 29: The best estimates for the constants in the regression models for the monthly measured 
groundwater table. 

 

Table 30: The best estimates for the constants in the regression models for the monthly synthetic groundwater 
table. 

 

Interc. Pw PETw S25 S60 GWTold

1 variable -5.05 1.03 - - - -

2 variables -4.17 1.01 -0.50 - - -

3 variables -4.42 0.85 -0.43 0.04 - -

4 variables -4.34 0.75 -0.37 0.00 0.04 -

5 variables -4.16 0.80 -0.32 0.00 0.04 0.14

Constants
Synthetic model - daily

Interc. Pw PETw S25 S60 GWTold

1 variable -3.61 0.02 - - - -

2 variables -2.98 0.02 -0.01 - - -

3 variables -3.12 0.02 -0.01 0.01 - -

4 variables -3.26 0.02 -0.01 0.01 0.03 -

5 variables -3.14 0.02 -0.01 0.01 0.02 0.07

ConstantsRegression models for the 

total period - monthly

Interc. Pw PETw S25 S60 GWTold

1 variable -4.47 0.03 - - - -

2 variables -3.39 0.03 -0.02 - - -

3 variables -4.53 0.02 -0.02 0.09 - -

4 variables -3.95 0.02 -0.02 0.15 -0.12 -

5 variables -3.69 0.02 -0.02 0.15 -0.13 0.14

Constants
Synthetic model - monthly
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Additional calibration and validation results 

 

Figure 26: Daily models calibrated from the beginning on 730 days of data. 

 

 

Figure 27: Daily models calibrated from the end on 730 days of data. 
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Table 31: The R2 for models calibrated on 730 days of data. 

 

Table 32: The RMSE for models calibrated on 730 days of data. 

 

Table 33: The exact number of days used for calibration and validation for the models. 

 

 

Scenario B E B E B E

1 variable 0.704 0.864 0.822 0.732 0.789 0.789

2 variables 0.940 0.972 0.962 0.947 0.958 0.958

3 variables 0.945 0.978 0.960 0.936 0.957 0.947

4 variables 0.952 0.980 0.914 0.926 0.925 0.945

Calibration and 

validation - daily

R2

Calibration Validation Total

Scenario B E B E B E

1 variable 0.170 0.192 0.228 0.229 0.210 0.218

2 variables 0.076 0.088 0.108 0.100 0.099 0.096

3 variables 0.074 0.079 0.109 0.142 0.099 0.125

4 variables 0.069 0.076 0.145 0.140 0.125 0.123

Calibration and 

validation - daily

RMSE

Calibration Validation Total

Total

Scenario B E B E B,E

1 variable

2 variables

3 variables 691 1384 1367 2058

4 variables 688 1379 1365 2053
674

Validation

717 730 1460 1447 2177

Days available for 

calibration and validation

Days

Calibration
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Figure 28: The monthly models calibrated on the first 90 months of data. 

 

Figure 29: The monthly models calibrated on the last 90 months of data. 

 

Table 34: The R2 for the models calibrated on 90 months of data. 

 

Scenario B E B E B E

1 variable 0.507 0.809 0.753 0.546 0.668 0.668

2 variables 0.788 0.916 0.842 0.769 0.808 0.829

3 variables 0.838 0.921 0.843 0.794 0.812 0.841

4 variables 0.843 0.922 0.852 0.798 0.823 0.843

5 variables 0.719 0.909 0.696 0.784 0.683 0.840

Calibration and 

validation - monthly

R2

Calibration Validation Total
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Table 35: The RMSE for the models calibrated on 90 months of data. 

 

Table 36: The exact number of months that the models have been calibrated and validated on. 

 

 

 

Scenario B E B E B E

1 variable 0.235 0.189 0.262 0.267 0.253 0.239

2 variables 0.154 0.125 0.217 0.206 0.198 0.178

3 variables 0.137 0.121 0.230 0.205 0.204 0.175

4 variables 0.135 0.121 0.222 0.203 0.197 0.174

5 variables 0.196 0.132 0.307 0.190 0.278 0.168

Calibration and 

validation - monthly

RMSE

Calibration Validation Total

Total

Scenario B E B E B,E

1 variable

2 variables

3 variables

4 variables

5 variables 61 85 141 117 202

75 88 144 131 219

70 88 141 123 211

Months available for 

calibration and validation

Months

Calibration Validation


